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The electronic structure of the permanganate ion has been investigated, using a semiquantitative
LCAO MO method without empirical parameters. The atomic orbital basis set for the central ion has
been varied systematically, and the effect of symmetric changes of bond distances has also been
examined. In addition, calculations have been performed in which the regions around the ligands
have been made more attractive for electrons, to simulate the presence of cations in solution and in the
crystalline state. The electronic absorption spectrum of MnO, has been tentatively assigned, on the
basis of predicted band shapes and transition energies.

Die Elektronenstruktur des Permanganations wurde mit einer halbquantitativen LCAO-MO
Methode ohne empirische Parameter behandelt. Die Zustandsfunktionen des Zentralatoms wurden
variiert und-der EinfluB symmetrische Anderungen der Bindungsabstinde untersucht. Um die Gegen-
wart von Kationen in Losung und im Kristall zu simulieren, wurden daneben auch Rechnungen
durchgefiihrt, bei denen einer stirkeren Elektronenanziehung durch die Liganden Rechnung ge-
tragen wird. Ferner wurde versucht, das Absorptionsspektrum von MnO, auf Grund der voraus-
gesagten Bandenform und Ubergangsenergien zu deuten.

La structure électronique de l’ion permanganate est étudiée 4 1’aide d’une méthode LCAO MO
semi-quantitative sans paramétres empiriques. La base d’orbitales atomiques pour I'ion central a été
systématiquement variée et Peffet de changements symétriques des longueurs de liaison a été aussi
examiné. Pour simuler la présence des cations dans la solution et dans le cristal on a fait des calculs
dans lesquels la région autour des ligands était rendue plus attractive pour les électrons. Le spectre
d’absorption de MnOj est interprété a 'aide des prédictions sur les formes des bandes et les énergies
de transition.

1. Introduction

A number of molecular orbital calculations have been performed on transi-
tion metal complexes during the last few years. Most of these calculations make
use of empirical parameters, derived from experimental data, referring either to
the complexes themselves or to the ions from which the complexes are built.
Since, however, the atomic orbitals of the free ions differ very much in shape
and radial extension, the number of independent parameters is so large, that it
is impossible to adhere to the important principle, that the number of experimental
quantities used to fix the parameters should considerably exceed the number
of parameters itself. Due to this fact, it is very difficult to estimate the amount of
information content present in these calculations.

Now, it is not only in the selection of parameters that one must make a choice
in a parameterized molecular orbital theory. As in any theory, in which at least
some of the molecular integrals are actually evaluated, a decision must be made
as to the radial form of the atomic orbitals used in the numerical work. The
outcome of a calculation is, therefore, a presumably complicated function of para-
meter and atomic orbital choice. An understanding of the nature of this function
should enable one to judge the validity of a prediction made by a parameterized
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theory. A prediction which is fairly stable towards changes in parameter and
atomic orbital choice would, in general, be considered more probable than one
which is very sensitive to such changes.

In a recent review article [8] it was suggested that it might be possible to
construct semiquantitative theories with an information content comparable to
that of the parameterized theories. As defined here a semiquantitative theory
operates without empirical parameters, but with a certain set of numerical approxi-
mations. Such a theory was presented in {8] and applied to the permanganate
ion, MnQ,. No attempt was, however, made to vary the atomic orbitals involved.

In the present article we report a series of molecular orbital calculations for
MnOy,, in the same semiquantitative scheme as was used in [8]. The atomic orbital
basis set for the central ion has been varied systematically, and the effect of sym-
metric changes of bond distances has also been examined. In addition, we have
performed calculations in which the regions around the ligands have been made
more attractive for electrons, to simulate the presence of cations in solution and
in the crystalline state.

The results from our calculations show that there are a number of features
that are fairly insensitive to changes in the input conditions, but there are also
features which are not. We believe that a good qualitative understanding of the
electronic structure of MnO, may be obtained through a consideration of our
results, and that more questions can now be answered than before. But the re-
sults also demonstrate that it is fallacious to demand that theories of the present
type, and also parameterized theories should be able to give quantitatively correct
answers at this stage.

2. Description of Method
2.1. Core and Valence Orbitals

The method employed in the present set of calculations has been thoroughly
described and discussed in [ 8], and so we shall confine ourselves to a brief outline
here.

The molecular orbitals (MO’s) of the complex are divided into core orbitals
and valence orbitals. The core orbitals include the ligand 1s orbitals and the 1s,
2s, 2p, 3s, and 3p orbitals of the central metal ion; these orbitals are all assumed
to be the same as in the free ions. The valence MQ’s, denoted ¢,, are constructed
as linear combinations of atomic orbitals, LCAQO’s:

(pi= Z arin (1)
r=1

assuming m atomic orbitals (AO’s), denoted y,. The AO’s are of the types 3d,
4s, and 4p for the metal ion, and of the types 2s and 2p for the ligands. In an LCAO
MO calculation one determines the coefficients a,; of Eq. (1) for a given radial
dependence of each AO. By allowing the radial functions of the y,’s to vary by
performing several LCAO MO calculations, one may gain information as to
which radial functions are the best to use. The same kind of information may, of
course, be obtained by introducing several AO’s of the same symmetry in (1).
This procedure, which would be the natural one to follow in a completely quan-
titative investigation, is, however, not practical within the set of approximations
used in the present work.
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2.2. Orthogonal Atomic Orbitals

It is convenient to replace the AQ’s y, with a set of orthonormal orbitals 4,,
following one of the methods suggested in an article by Lowdin [12]: The valence
AO’s are divided into two groups, group 1 consisting of the metal 3d orbitals
and the ligand 2s and 2p orbitals, and group 2 containing the metal 4s and 4p or-
bitals. Within group 1 the AO’s, x4, x,, ..., x, are orthogonalized to each other,
by use of Lowdin’s method of symmetrical orthogonalization [12]. The AO’s
of group 2, x,+1, Xp+2;--»Xm Which are already orthogonal to each other, are then
orthogonalized to the orbitals of group 1, by use of the Schmidt method.

Expressed in terms of the orthonormal orbitals defined in this way, Eq. (1)
becomes: m

goi: z Criir (2)

r=1

and the MO coefficients given later in this article all refer to Eq. (2).

2.3. Self Consistent Field Equations and Integral Approximations

The ground state of the permanganate ion is a totally symmetric singlet state.
In the Hartree-Fock model we represent it by a single Slater determinant:

~core Fcore core L

Y= |¢(1:0re 21 .. (pq (pq (1 (/_)1 e (ﬁn ¢n1 (3)
with ¢§°** and ¢; standing for core and valence MO’s respectively. The + and —
refer to alpha and beta spin functions in the usual way.

The core orbitals, as defined in Section 2.1, are to a good approximation ortho-

gonal to each other, and the “strong orthogonality condition™:

fo) @i () dt, =0 forall  (;, 9;°) pairs C
is also reasonably well fulfilled. It is then expedient to introduce the one-electron
core operator:

Hes(1) = T(1)+ ¥, V(1) (5a)
;
V()= — nge + Y @I K (5b)

where g numbers the various nuclei, with charges Z e. T(1) is the kinetic energy
operator, and J{°*¢ and Kj°*° are the usual Coulomb and exchange operators:

2
chore(P(l) — J‘ ri__ (pjgore(z) (p;_:ore(z) dTZ . q)(l) (6 a)
12

2
K;ore o(l)= J % qo}:ore(z) () dz, - q)}?"“’(l) . (6b)
12

Application of Roothaan’s method [22] then leads to the following set of
equations [&]:

$ deig e £ pa(tina- sl c=a $ Gursaca o
s=1 t,u=1 s=1

withr=1,2,...,m, and
(r[H**"|5) = [ A0 H™*(1) A(1) d, (8a)

[rsiu] = j f A (1) zs(n%uz) 1) dr, de . 8b)
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P, , is an element of the charge and bond order matrix:

P.=2 ) C,C,. ©)
i=1

A number of semiquantitative features are now introduced to facilitate the
evaluation of the integrals in Eq. (7). First, the quantities S, from the overlap
integrals J,, + S, between group 1 AQ’s are assumed to be so small, that second
and higher order terms in these quantities may be neglected. As shown by
Loéwdin [12], this leads to the relations

1 p
j'r=Xr_7 z SsrXs’ (V=1,...,p). (10)
=1

s

Furthermore, we neglect products of the type S, S,, for r, s, < p and u > p, so that

A,=<1— 5 Sfr)_m <x,— 5 Ss,xs), (r=ptl,um). (L)

s=1 s=1

After the substitution of Egs. (10) and (11) into Eq. (7), the problem is to evaluate
integrals of the types (8). In the evaluation of most of these integrals we adopt
the following approximations:

%) 10 =3 8,506 (D) (D) + 2D 1(1), (5= p) (12a)

LD 1) =80 (1)  (=p,s>p) (12b)

which may be looked upon as special cases of a formula given by Léwdin [117]:
%1 x5(1) = e 1,(1) 1,(1) + B x5(1) x5(1) - (13)

With o + § = §,,, the total charge of the distribution y, y, is preserved by the appro-
ximation. By adopting different values for («, f), as in (12), an attempt is made also
to represent the dipole moment of y, x, correctly. Eq. (12a) was first presented by
Muiliken [13] on integral form.

The approximations (12) are not, in our scheme, used in the evaluation of
integrals containing the kinetic energy operator, and for integrals involving
the core operator they are only used when more than two centers are involved.
In the remaining integrals the original charge distributions are retained.

With the present set of approximations the expressions for the integrals
between the orthogonalized orbitals are considerably reduced. A further simpli-
fication is, however, introduced by considering all AO’s as s-like in their angular
dependence, except in evaluating overlap integrals and one- and two-center in-
tegrals arising from H®®. Our scheme has therefore much in common with the
complete neglect of differential overlap (CNDO) method by Pople et al. [18],
but instead of introducing parameters like these authors, we prefer to calculate
all integrals exactly, using Corbaté and Switendick’s DIATOM programs [4].
As mentioned in the introduction, the number of independent parameters is so
large in our case, that they cannot be determined from experimental results on
MnO,, and no ab initio calculation exists with which we can compare.

The approximations behind the present method have been thoroughly
discussed in [8] and [6], to which the reader is referred for further discussion.
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3. Radial Functions
This Section contains a specification of the radial functions which have been
considered in our calculations. The radial functions for oxygen have not been
varied, but we have, as mentioned earlier, performed calculations with a number
of different manganese valence AO’s.
Each radial function R,,(r) is represented by a linear combination of Slater-

type orbitals (STO’s): vnl)
Ry()= ¥ GiRm, ) (14)
i=
with a single STO being of the form
B (2Cj)2nj+1 1/2 w1 —Gr
R(n;, {)= [ (2! r e N7, (15)

The individual STO’s as well as the radial functions R,; are normalized according

to the relation: @
fRzr2 dr=1. (16)

0

The oxygen AQO’s have been taken from Clementi and Raimondi’s determination
of minimal basis set STO’s [3]. In the notation of Eq. (14) we have:

Ry, ()=R(1,7.6579)
R,,(r)= —0.2371 R(1, 7.6579) + 1.0277 R(2, 2.2458)
R,,(r) = R(2, 2.2266)

R, appears as a STO with n=2 and { = 2.2458, which has been Schmidt ortho-
gonalized to the 1s orbital

Table 1. Core orbitals for Mn

1 & G
1s i 24.385 1.0000
2s i 24.385 —0.3653
2 9.325 1.0646
3s 1 24.385 0.1436
2 9.325 —0.4835
3 4.27 1.0985
2p 2 10.15 1.0000
3p 2 10.15 —-0.3139
3 3955 1.0482

The manganese orbitals have been determined from the papers of Richardson
et al. [20,21]. Table 1 gives the fixed Mn core orbitals, used in all calculations, and
the various 3d, 4s, and 4p orbitals used are listed in Tables 2—4. These valence AO’s
are all orthogonal to the core orbitals of Table 1.

The 3d orbitals of Table 2 denoted d’, d°, ..., d* have been determined from
the configurations (Ar) (3d)”, (Ar) (3d)%, ..., (Ar) (3d)* respectively [20], with (Ar)
standing for the closed argon core (15)? (25)°> (2p)° (3s)* (3p)®. The 3d orbitals
are all of the “double zeta” type, being linear combinations of two STO’s. Ortho-
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Table 2. Mn 3d orbitals

Configuration n; & G
d’ 3 5.15 0.514
3 1.70 0.693
de 3 515 0.532
3 1.90 0.649
d’ 3 5.15 0.547
3 210 0.605
a* 3 5.15 0.565
3 230 0.562
& 3 5.15 0.585
3 2.50 0.519
4’ 3 5.15 0.605
3 270 0.479

Table 3. Mn 4s orbitals

Configuration n; ¢ C;
45(d®s?) 1 24.385 —0.0024
2 9.325 0.0081
3 4270 -0.0193
4 0.650 1.0002
45(d*s?) 1 24.385 —0.0211
2 9.325 0.0720
3 4.270 —-0.1794
4 1.350 1.0133
4s(d*st) 1 24.385 —0.0480
2 9.325 0.1651
3 4.270 —0.4338
4 1.940 1.0754
Table 4. Mn 4p orbitals
Configuration n; ¢ C;
4p(d®p?) 2 10.15 0.002861
3 3.955 —0.009868
4 0.51 1.000044
4p(d°p?) 2 10.15 0.029676
3 3.955 —0.10508
4 1.06 1.00502
4p(d*pY) 2 10.15 0.07384
3 3.955 —-0.27012
4 1.52 1.03270

gonality requirements would not exclude simple STO’s but it is known from
previous investigations [ 7, 20] that a single STO cannot represent an atomic 3d
orbital with sufficient accuracy, neither in the internal nor the external region of
an atom. This point has recently been thoroughly discussed by Brown and Fitz-
patrik [2]. It may be noted that all d orbitals correspond to configurations with



14 J. P. Dahl and H. Johansen:

empty 4s and 4p shells. This is due to the fact that the form of a 3d orbital is quite
independent of the population of these outer shells, as first shown by Watson [23].

The notation for the 4s and 4p orbitals has also been chosen so as to indicate
the configuration from which the orbitals have been determined. A 4p orbital
may be considered as a STO with n=4, which has been Schmidt orthogonalized
to the 2p and 3p orbitals of the core. Similarly, a 4s orbital may be considered
as a STO with n=4, orthogonalized to the 1s, 2s, and 3s orbitals. Use has been
made of this fact in constructing the 4s orbitals 4s(d®s®) and 4s(d*s*) in Table 3.
4s functions for the configurations (Ar) (3d)® (4s)? and (Ar) (3d)* (4s)* do not exist
in the literature, and we have therefore constructed such functions by demanding
that

{45(d°s?) _ {45(d>s%)
Lap(@®P?)  L4p(@p?)
for the 4s(d’s?) orbital, and
Las(d?s") _ Cagld’s?)
Lapldp) (4@ p?)
for the 4s(d*s") orbital. These relations fix, by means of the orbital 4s(ds?) and the
three 4p orbitals of Table 4, the 4s STO’s with n=4. Schmidt orthogonalization
to the core functions then results in the orbitals of Table 3.
The orbitals of Tables 2, 3 and 4 are in the following considered as a set of
possible valence AO’s for Mn, from which the best AO’s for an MO calculation
are to be chosen. It is not claimed that the relations (17) and (18) furnish the best

AQ’s for atomic states, rather they supply a set of 4s functions wich are convenient
for our purpose.

a7

(18)

4. Results and Discussion
The results from our calculations are presented in the following set of tables
and figures. Unless otherwise specified the Mn—O distance has been taken as
1.629 A, from the recent determination by Palenik [15]. This distance differs
slightly from the value 1.59 A used in the two permanganate calculations re-
ported in reference [8].

4.1. Search for Best Atomic Orbitals

According to the variational principle, the best MO’s are obtained by mini-
mizing the total energy of the system considered. This principle leads directly
to Roothaan’s equations [22] for a fixed set of AQ’s, and also to the requirement
that one should look for an optimal basis set of AO’s in the sense, that such a set
of AO’s, in conjunction with Roothaan’s equations, should result in a lower
energy than any other basis set of the same size. In parameterized theories and
semiquantitative theories like the present one, the variational principle is applied
to an energy expression which is only approximately correct. Hence the results
from a search for an optimal basis set must be interpreted with some caution. The
same holds, of course, for the results from a search for optimal coefficients in the
LCAQO’s through an application of Roothaan’s equations. It is in harmony with
this point of view to use AQO’s of a simple form and only to vary these on a coarse
mesh.
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The oxygen orbitals have not been varied here, because it is known from ab
initio calculations on smaller molecules, that the optimal first row AO’s to be
used in ground state MO’s differ only slightly from the best AQ’s for free atoms.
(See, for instance, references [19, 17], and [1].) The differences are too small to be
of significance in the present type of investigation. It would, however, be premature
to conclude that the experience gained regarding the first row AO’s can be trans-
ferred directly to the third row AO’s of the types 3d, 4s, and 4p. The factors govern-
ing the change of AO’s during molecule formation operate together in a compli-
cated way, as demonstrated by Coulson [5], and it is also known that the hydrogen
1s orbital changes drastically during molecule formation [197, and that 2p orbitals
optimized for excited states may be very different from the free atom 2p orbitals [ 10].

We have, therefore, attempted to minimize the energy of the closed shell
wave function (3} in order to determine the best AO’s of the types 34, 4s, and 4p.
The total energy, E, may be written

Et = Ecore + E (19)
where
q Z 62
Ecore= {j (pgore(i) [T(l)_z 2 :|(Pl§ore(1) dTl
i=1 g 1g
Z,Z,¢e 20)
+ | gty B (1) gp(1) dey g + Y S
g>h rgh
and E= Y {e+§ o) Ho(1) o,(1) 1, 1)
i=1

E..,. depends only on the nature of the core, and is thus the same for all calcula-
tions in which the Mn—O distance is the same. The variation of E, is therefore
given by the variation of E, when the valence AQO’s alone are varied.

In Table 5 we give the energy E in atomic units (1.a.u. = 27.21 eV) for two diffe-
rent choices of 3d function, viz. 3d(d”) and 3d(d*). For each 3d orbital, calculations
have been performed for all possible pairs of 4s and 4p orbitals that can be taken
from Tables 3 and 4. It is seen that E, for both choices of 3d function, is a mini-

Table 5. Variation of the energy E as function of 4s and 4p orbitals.
Energies in atomic units (lau.= 27.21 eV)

45(d%s?) 45(d°s%) 45(d*s)

3d(d7) 4p(dSp*) -17234 —173.79 —173.34
4p(d°p?) —175.38 —176.44 —175.80
4p(d*ph) —174.58 —175.54 —174.40
3d(d*) 4p(d°p?) —171.35 —172.94 —171.75
4p(d°p?) —174.34 —175.63 —174.67
4p(d*p) —173.75 —174.81 —~173.61

mum for the functions 4s(d®s?) and 4p(d° p?). For this reason we expect the best
in situ 4s and 4p orbitals to be quite close to these functions. So far as the 4s orbital
is concerned, the function is the same as in the free atom.

With the orbitals 4s(d°s%) and 4p(d°p?) a series of calculations have been
performed, in which the 3d orbital has been varied. The resulting energies are
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shown in Table 6. Shown is also, for each calculation, the population of the 3d
shell. With reference to Eq. (9) this population is defined as ) P,,, where the sum

t

over t is over the five 3d orbitals. It is seen from Table 6, that the energy E decreases
as the 3d orbital expands, i. e. with increasing population of the 3d shell. There is,
however, no indication of a minimum in E; indeed, E decreases almost linearly
throughout the series of functions 3d(d?), ..., 3d(d"). It is, however, noted that
the energy varies much less throughout Table 6 than throughout Table 5, and
this makes it understandable that our approximations prevent the appearance of
a minimum in Table 6. We may, however, take the results of that table to indicate,
that there is a tendency for the 3d orbital to expand during molecule formation.
We assume, therefore, that the best 3d orbitals are 3d(d®) or 3d(d”). This assump-
tion leads to a 3d shell population close to five, which is very reasonable, since a
free Mn atom contains five 3d electrons.

Table 6. Variation of the energy E as function of the 3d orbital,
with the 4s and 4p orbital fixed as 4s(d°s*) and 4p(d>p?)

3d orbital E(au) Population of 34 shell
3d(d") —176.44 5.12
3d(d%) —176.15 4.65
3d(d®) —17591 4.39
3d(d% —175.63 4.18
3d(d®) —175.31 3.98
3d(d?) —175.02 3.80

The five 3d orbitals span the irreducible representations e and ¢, in a tetra-
hedral molecule, and there is therefore the possibility that different 3d orbitals
should be used for these two representations. We have studied this possibility,
but our results are quite insensitive to differences in the two orbitals. It is the
choice for the t, orbital which determines the energy and the molecular orbital
level diagram. Use of the 3d(d”) orbital for ¢, and the 3d(d®) orbital for e leads,
for instance, to an energy E = — 176.43 a.u., which is the same value as is obtained
when the 3d(d”) orbital is used for both representations. It is therefore not necessary,
in our approximation, to work with two different radial functions for the 3d
orbitals.

The conclusion of the present section is then, that one should use free atom
AO’s for the ligands. The Mn 4s and 4p orbitals should be taken as 4s(d®s?) and
4p(d°®p?) and the orbitals 3d(d”) or 3d(d®) should be used as 3d orbitals, for both e
and t, representations.

4.2. Molecular Orbitals as Functions of Metal AO’s

The MO’s of a tetrahedral molecule have symmetry designations ay,e,t,,and t,,
and they are in the LCAO approximation represented as linear combinations of
symmetry adapted orbitals. The symmetry adapted orbitals are again linear
combinations of atomic orbitals, in our case orthogonalized AO’s. We refer to
reference [8] for a full specification of the form of the symmetry adapted orbitals
used in the present work.
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In Table 7 we present the MO energies g; of Eq. (7), resulting from a set of cal-
culations in which the Mn 34 radial function was kept fixed as 3d(d”), and the 4s
and 4p orbitals were varied, as in Table 5. The orbitals 2e, 4¢,, 3a,, and 5t, are
all empty, whereas the remaining ones are fully occupied with electrons. The MO
energies are seen to be highly dependent on the 4s and 4p orbitals chosen, which
is not too surprising. Of more interest, however, is the fact that also the order of
the MO levels is quite sensitive to variations in the 4s and 4p orbitals. This is
especially true for the order of the highest occupied orbitals, whereas the order
of the empty orbitals is 2e < 4t, < 3a, < 5t, in all cases, except in the calculation
(2, 1) where 2e and 4t, are approximately degenerate, and (3, 1) where the order of
2e and 4t, is reversed. All in all Table 7 emphasizes the necessity of performing
the search for optimal AQO’s, described in the preceding section.

Table 7. MO energies in eV as functions of Mn 4s and 4p orbitals with the 3d orbital fixed as 3d(d")*
ssp L1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

a 8.377 3.928 6.361 10.828 3955 9.339 12.682 7312 14.742
— 5610 —10.098 — 6282 —15442 —17.840 —12895 —11396 —11.757 — 3.836
—27.860 —31.180 —28215 —34926 —36.681 —32.043 —22743 -—27.534 —21.551

e 1.209 - 1.983 2.576 3.688 — 2.287 4.498 6.506 0.731 8.173
—11.674 —-15522 -10305 -— 9380 —15162 — 8830 — 7262 —12.203 - 5049

ty 14.630 10.073 14.650 16.811 11.212 17.146 18.358 13.009 19.438
3.063 2.150 5.185 3.683 1.691 6.974 3.928 3427 9.807

— 7870 —12655 — 9.767 — 6.853 —13354 — 8487 — 5662 —11216 - 5338
—13.547 —-24.858 —19.934 —11.853 23934 —17450 -10205 —22513 —15244
—30.788 —36.385 —31.185 —29.125 —36.559 —29.715 —27275 —34332 -26220

t; — 7670 — 9401 — 6812 — 6.685 —11576 — 6.583 — 5454 — 9077 — 2.656

* The 4s and 4p orbitals used are specified by pairs of numbers in the heading of the table, so that
i, k stands for the 'th 4s orbital and the k’th 4p orbital, according to the orders 4s(d%s?), 4s(d%s?),4s(d*s")
and 4p(d°s?), 4p(d°p?), 4p(d*p).

Fig. 1 shows how the MO energies vary with the Mn 3d radial functions, with
the 4s and 4p orbitals fixed as the “optimal” orbitals 4s(d®s?) and 4p(d°p?). It is
seen that the locations of the important e orbitals are very dependent on the choice
of the 3d radial function, but otherwise the order of the molecular orbitals is
rather stable. On the basis of the arguments presented in Section 4.1 it is the
first two columns in Fig.1 which should represent the most likely molecular
orbital level diagram for MnO}.

In Tables 8 and 9 we list the coefficients of the MO’s corresponding to columns
1 and 4 in Fig. 1. It is again clear that it is the ¢ orbitals which are most sensitive
to the form of the 34 radial function. A prominent feature of tables 8 and 9 is the
fact that the orbitals 4s and 4p are strongly mixed into the occupied orbitals.
For a further discussion of the MO coefficients we refer to ref. [8], where Table 8
also is presented, with the slight modification that the Mn—-O distance is chosen
as 1.59 A instead of 1.629 A, as used here.

4.3. Molecular Orbitals as Functions of Mn—O Distance

It is of considerable importance to know how an MO level diagram depends
on bond distance, and we have therefore performed calculations in which the

2 Theoret. chim. Acta (Berl.) Vol. 11
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Mn—O bond length has been varied, using the Mn orbitals 3d(d"), 4s(d>s*), and
4p(d°p?). The results from these calculations are shown in Fig. 2. Calculations
were performed for the Mn-distances 1.552 A,1.590A,1.629 A,1.659 A,and 1.689 A.
The first of these distances is the average value of the Mn—O distances given by
Wryckoff [24], the second value was used by Oleari et al. [14] and in Ref. [&].
The value 1.629 A was determined by Palenik [15] and has been used extensively
in the present work. Finally, the value 1.659 A is the Mn-O distance in MnO3 ",
as determined by Palenik [16], and the value 1.689 A is the extrapolated Mn-O
distance in MnO3".

The MO energies are seen to be linear functions of the Mn—O distance, and
apart from the crossing of the la, and the 1¢, orbitals, the order of the MO’s
remains unchanged between 1.55 and 1.70 A. The slopes of the different lines in
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Fig. 1. MO level diagram as depending on the form of the Mn 3d radial function. The abscissa indicates
the configuration from which the atomic 3d radial function has been derived (see Section 3)
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Table 8. Molecular orbitals for MnOy,, corresponding to the metal orbitals 3d(d"), 4s(d’s®), 4p(d°p?)

Eigenvalues (eV) Eigenvectors
s oy o,
a 3.955 —0.3790 —0.1151 09182
~17.840 0.7125 0.5969 0.3689
—36.681 —0.5905 0.7941 —0.1442
d n
e — 2.287 0.7208 —0.6932
—15.162 0.6932 0.7208
P d o, o n
t, 11.212 —0.3085 —0.5176 0.7771 0.0830 0.1587
1.691 —0.6184 0.4461 —0.0143 —0.3806 0.5254
—13.354 —0.1809 0.4028 0.3822 —0.2939 —0.7567
—23.934 0.6273 0.4845 0.4975 0.0190 0.3519
—36.559 —0.3140 0.3689 0.0377 0.8727 —0.0485
T
t, —11.576 1.0000

Table 9. Molecular orbitals for MnO,, corresponding

to the metal orbitals 3d(d*), 4s(d>s?), 4p(d°p?)

Eigenvalues (eV) Eigenvectors
s g, a,
a 5.818 —0.3244 —0.1010 0.9405
—18.546 0.7150 0.6248 0.3137
—37.156 —0.6193 0.7742 —0.1305
d n
e 4.533 0.9744 —0.2248
—12.979 0.2248 0.9744
r d o, o A
t, 10.209 —0.3823 —0.3610 0.8338 —0.0273 0.1660
— 0378 —0.5605 0.4539 —0.1870 —-0.3253 0.5823
—13.903 —0.1495- 0.6009 0.3149 —0.2750 —0.6647
—22.466 0.5961 0.5003 04112 0.2028 0.4292
—34.666 —0.4025 0.2287 —0.0396 0.8813 —0.0860
T
t, —12.368 1.0000

Fig. 2 vary, however, considerably, and this is a point of great importance for the
understanding of the electronic spectrum, as it will be emphasized in Section 4.5.

Fig. 2 may also partly answer the question, how accurate a structure analysis
should be in order to provide a satisfactory geometry for use in MO calculations.
An accuracy of +0.1 A is apparently sufficient for theories like the present, in
which one should not attach too much significance to the exact numbers, but
only trust the qualitative aspects. But Fig. 2 also indicates that an accuracy of
+0.01 A might well be desirable in exact calculations to come.

ad
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Fig. 2. MO level diagram as function of the Mn-O distance

4.4. Variation of Ligand Potential

The calculations mentioned so far all refer to an isolated MnQy ion. In practice,
however, the MnOj, ion is always embedded either in a crystal or in a solution,
and it must be expected that nearby cations will create a potential, which is more
attractive for electrons in the regions around the ligands than in the region around
the Mn ion. As suggested in Ref. [8] this feature may be taken into account by
subtracting a certain positive number, A4°°" from all integrals of the type
5 (1) Ho"*(1) x,(1) d7, where y, is a non-orthogonalized ligand AO.

Fig. 3 shows the MO energies as function of 4°", corresponding to the Mn
orbitals 3d(d”), 4s(d>s?), and 4p(d°p?). The MO energies are seen to vary linearly
with 4°°*® over the range considered. Also the gap between the occupied and the
empty orbitals (i.e. between t; and 2e) increases with 4°", and this fact may
be used, as in Ref. [8], to place the first transition energy correctly, i.e. 4°*° may
be used as a semiempirical parameter. In this way one would, presumably, not
only correct for some of the influences from the surroundings, but also for errors
in the relative positions of metal and ligand orbitals on the energy scale. Such
errors may occur because of the approximations of our model.

4.5. Electronic Transition Energies

The non-occupied MO’s obtained by our calculations may be used to con-
struct wave functions for excited states of the MnQO, ion, by transferring electrons
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from filled to empty orbitals. The ground state wave function for MnO, has
symmetry 4,, and since the electric dipole vector transforms as T, all electric
dipole allowed transitions are to excited states of symmetry 'T,. One excited
state of symmetry T, may be derived from each of the one-electron transitions
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Fig. 3. MO level diagram as function of 4°°

shown in Fig. 4. The transition energies A E, ,, are in that figure shown as functions
of the 34 radial function, and are defined as

AE; =& —&—Jy (22)
where the transition i—k corresponds to the transfer of an electron from the
occupied orbital ¢, to the empty orbital ¢,. J;, is the usual Coulomb integral:

2
Ju= f @i(1) 40,-(1)—:1—2 0x(2) @i(2) d1, d1;. (23)

Eq. (22) is not the correct expression for the energy associated with a'4, —»'T,
transition, but differs from it through important two-electron integrals [§],
which serve to separate the various electronic states associated with the one-
electron transition. These integrals are considerably smaller than J,, however,
and will in general give a positive contribution to AE,_,,. Such integrals can not
be evaluated with sufficient accuracy by a straightforward application of the
CNDO approximation, and instead of evaluating them in a ZDO approximation
we have left them out altogether. One further reason for doing so is supplied by
the fact, evident from Fig. 4, that the calculated transition energies are extremely
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sensitive to changes in the radial functions used, so that it is difficult to attach
any quantitative meaning to the calculated transition energies. Still, Fig. 4 con-
tains some useful information, when it is considered together with other aspects
of the calculation.

According to Section 4.1, one should orily attach significance to the results
from the calculations, in which the 3d radial function has been taken as 3d(d”) or
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Fig. 4. Transition energies as functions of the Mn 34 radial function. Mn 4s and 4p functions are taken
as 4s(d*s?) and 4p(d°p?)

3d(d®), and we shall therefore in the following limit ourselves to these cases. The re-
maining part of Fig. 4 reminds of the necessity of looking for optimal AQO’s in an
LCAO MO calculation.

5. Interpretation of the Electronic Absorption Spectrum

The electronic absorption spectrum of the MnO, ion has been the subject-
matter of much discussion. We refer to Ref. {8] for a comparison of the results
from various theoretical investigations and add here only the information obtained
through the present set of calculations.

The most complete absorption spectrum of MnQO, has been recorded by
Holt and Ballhausen [9], who examined a solid solution of KMnO, in KCIO,
at liquid hydrogen and helium temperatures. Four band systems were observed
and discussed:

The first band system has its maximum at about 20,000 cm ™! and shows a
very complicated vibrational pattern. Holt and Ballhausen were able to conclude
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that this band system represents a single electronic transition from the orbitally
non-degenerate ground state to a threefold orbitally degenerate state.

The second band system covers the region from 25,000 cm ™" to 30,000 cm ™
and consists of seven peaks superimposed upon a strong background.

The third band system shows a very regular progression in 750 cm™!, the
maximum occurring at 33,000 cm™!. Only a single electronic transition is in-
volved.

The fourth band system has its maximum at 43,500 cm~* and is completely
featureless; it represents again a single electronic transition.

Holt and Ballhausen discussed the interpretation of this spectrum on the basis
of the calculations presented in [8], but only a very tentative assignment was
possible. With the present set of calculations we are, however, able to take one
more step forward towards the understanding of this puzzling spectrum.

1

Table 10. Molecular transition energies in eV, as functions of Mn—O distance R in A.Mn radial functions
are 3d(d"), 4s(d°s%), 4p(d®p?)

Transition R
1.552 1.590 1.629 1.659 1.689

1, 2e 0.01 0.00 0.18 022 0.57
3t,2e 1.58 141 1.33 121 1.28
t, —4t, 6.44 595 5.52 5.17 484
3,41, 8.18 7.61 7.05 6.65 6.28
le—4t, 1027 9.21 8.16 743 6.67
3¢, 3a, 8.23 8.29 8.45 8.66 9.09

The one-electron transitions of Fig. 4 are in Table 10 presented as functions
of the Mn~O separation, for the 3d radial function 3d(d”). The fact that the first
transition energy is almost zero is a consequence of the fact that we have desisted
from using semiempirical parameters in our calculations. The transition energies
would be pushed up by using, for instance, a non-zero value for 4°°**, as discussed
in [8] and section 4.4, and also Eq. (22) is incomplete as mentioned in Section 4.5.

The important information in Table 10 is, that the transitions ¢; — 2e, 3t, — 2e,
and 3t,— 3a, allow the formation of excited states which are stable with respect
to symmetric distortions, and with an Mn-O distance close to the one found
in the ground state, whereas the transitions t; — 4t,, 3t, —>4t,, and le—4t, result
in dissociative states. The first three transitions should therefore lead to absorption
bands with a pronounced vibrational structure at low temperatures, whereas the
last three transitions should result in broad, featureless bands. The half-widths
of these bands may be estimated from Table 10 as follows.

The totally symmetric zero-point vibration is governed by the wave function

a \174 ,
wo<x)=<;) e 4

where x measures the magnitude of the totally symmetric displacement from the
“equilibrium” position, and a=4n2Mvc/h. To a good approximation M may
be taken as the mass of the oxygen atom; v is the totally symmetric vibration fre-
quency in cm ™!, and h is Planck’s constant. The half-width & of the gaussian
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1/2 1

function |y (x)|* is [In2/a]
[9], we find that 6 ~0.043 A.

The half-widths of the bands associated with the transitions t;, — 4t,, 3t, » 4t,,
and le— 4t, may then be estimated from Table 10 as the variations in the transi-
tion energies over a range of 0.06 A, when the slight variation of the ground state
energy over this range is neglected. We find for the three transitions mentioned
the half-widths 3900 cm ™!, 4700 cm™*, and 8800 cm ™%, respectively.

From Fig. 4 it follows that our calculations predict two low lying absorption
bands with pronounced vibrational structure. These bands arise from an inter-
action between the t; —»2e and 3t,— 2e transitions. The interaction is strong,
if 3d(d®) is the optimal orbital, but if the optimal orbital is 3d(d”) then the first of
the transitions is mostly t; —2e, the second mostly 3t, »2e. We associate the
first and third band systems with these two transitions.

Fig. 4 indicates that the 3t, —»3a, transition occurs at too high energies to
require consideration in the present context. We are then left with the transitions
t, —>4t,, 3t, > 4t,, and le— 4t, which should all lead to featureless bands. If 3d(d")
is the optimal orbital then the three transitions should not mix heavily, and they
should all lead to absorption at high energies. As in Ref. [8], we would in this
case leave the second band system unexplained and associate the fourth band
system with a transition which is mainly ¢, —4t,.

If, however, the optimal orbital is 3d(d®), then the most likely assignment
would be the following: The first and third band systems correspond to mixtures
of the t; —»2e and 3t, —» 2e transitions; the featureless background of the second
band system corresponds to the t; —4¢, transition, pushed down by configuration
interaction, and the fourth band system corresponds to a heavy mixture of the
3t,—4t, and le—4t, transitions. The fine structure of the second band system
remains unexplained by this assignment, but may be associated with an orbitally
forbidden transition.

According to the measurements by Holt and Ballhausen [9] the half-widths
of the second and third band systems are about 4000 cm ™! and 6500 cm!, and
these findings would seem to support the second assignment above, corresponding
to the 3d(d%) orbital, when a comparison is made with the half-widths estimated
from our calculations.

An important conclusion to be drawn from the present set of calculations is
that the outcome from a calculation of transition energies is extremely sensitive
to the radial functions chosen. This feature must of course hold for semiempirical
as well as for semiquantitative models. It does not, however, mean that such models
are worthless, since, as we have demonstrated in the present section, it is possible
to arrive at a probable assignment of the electronic spectrum, but one should
certainly be careful not to jump to conclusions from a single calculation.

, and under the assumption that v 800 cm™

6. Conclusion

The present set of calculations constitutes one of the most detailed theoretical
investigations carried out so far for the MnO, ion. It is hoped that it will be of
qualitative use in further experimental examinations, until it becomes possible
to perform an ab initio calculation for this ion.
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