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The electronic structure of the permanganate ion has been investigated, using a semiquantitative 
LCAO MO method without empirical parameters. The atomic orbital basis set for the central ion has 
been varied systematically, and the effect of symmetric changes of bond distances has also been 
examined. In addition, calculations have been performed in which the regions around the ligands 
have been made more attractive for electrons, to simulate the presence of cations in solution and in the 
crystalline state. The electronic absorption spectrum of MnO~ has been tentatively assigned, on the 
basis of predicted band shapes and transition energies. 

Die Elektronenstruktur des Permanganations wurde mit einer halbquantitativen LCAO-MO 
Methode ohne empirische Parameter behandelt. Die Zustandsfunktionen des Zentralatoms wurden 
variiert und der EinfluB symmetrische ~nderungen der Bindungsabstiinde untersucht. Um die Gegen- 
wart yon Kationen in L6sung und im Kristall zu simulieren, wurden daneben auch Rechnungen 
durchgefiJhrt, bei denen einer stiirkeren Elektronenanziehung durch die Liganden Rechnung ge- 
tragen wird. Ferner wurde versucht, das Absorptionsspektrum von MnO~ auf Grund der voraus- 
gesagten Bandenform und ~bergangsenergien zu deuten. 

La structure 61ectronique de l'ion permanganate est 6tudi6e ~ l'aide d'une m6thode LCAO MO 
semi-quantitative sans param6tres empiriques. La base d'orbitales atomiques pour l'ion central a 6t6 
syst6matiquement vari6e et l'effet de changements sym6triques des longueurs de liaison a 6t6 aussi 
examin6. Pour simuler la pr6sence des cations darts la solution et darts le cristal on a fair des calculs 
dans lesquels la r6gion autour des ligands ~tait rendue plus attractive pour les 61ectrons. Le spectre 
d'absorption de MnO~ est interpr6t4 ~t l'aide des prhdictions sur les formes des bandes et les 6nergies 
de transition. 

1. Introduction 

A n u m b e r  of  m o l e c u l a r  o rb i t a l  ca lcu la t ions  have  been pe r fo rmed  on  t rans i -  
t ion meta l  complexes  du r ing  the last  few years.  M o s t  of  these ca lcula t ions  m a k e  
use of  empi r i ca l  pa ramete r s ,  der ived  f rom expe r imen ta l  da ta ,  referr ing ei ther  to 
the complexes  themselves  or  to the  ions  f rom which the complexes  are  built .  
Since, however ,  the  a tomic  orb i ta l s  of  the  free ions  differ very much  in shape  
and  rad ia l  extension,  the  n u m b e r  of  i n d e p e n d e n t  p a r a m e t e r s  is so large,  tha t  it  
is imposs ib le  to  adhere  to the  i m p o r t a n t  pr inciple ,  tha t  the  n u m b e r  of exper imenta l  
quant i t i es  used to fix the p a r a m e t e r s  shou ld  cons ide rab ly  exceed the n u m b e r  
of  p a r a m e t e r s  itself. D u e  to this  fact, it  is very difficult to es t imate  the  a m o u n t  of  
i n fo rma t ion  con ten t  p resen t  in these ca lcula t ions .  

Now,  it is no t  only  in the  select ion of  p a r a m e t e r s  tha t  one  mus t  make  a choice 
in a p a r a m e t e r i z e d  mo lecu l a r  o rb i t a l  theory .  As in any theory ,  in which at  least  
some of  the  mo lecu la r  in tegra ls  a re  ac tua l ly  evalua ted ,  a decis ion mus t  be m a d e  
as to the  rad ia l  form of  the  a tomic  o rb i ta l s  used in the  numer ica l  work.  The  
ou t come  of  a ca lcu la t ion  is, therefore,  a p r e s u m a b l y  compl i ca t ed  funct ion of  pa ra -  
mete r  and  a tomic  o rb i t a l  cho i ce .An  unde r s t and ing  of  the  na tu re  of  this funct ion 
shou ld  enable  one to  j u d g e  the va l id i ty  of  a p red ic t ion  m a d e  by  a pa r ame te r i zed  
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theory. A prediction which is fairly stable towards changes in parameter and 
atomic orbital choice would, in general, be considered more probable than one 
which is very sensitive to such changes. 

In a recent review article [8] it was suggested that it might be possible to 
construct semiquantitative theories with an information content comparable to 
that of the parameterized theories. As defined here a semiquantitative theory 
operates without empirical parameters, but with a certain set of numerical approxi- 
mations. Such a theory was presented in [8] and applied to the permanganate 
ion, MnO2. No attempt was, however, made to vary the atomic orbitals involved. 

In the present article we report a series of molecular orbital calculations for 
MnO~, in the same semiquantitative scheme as was used in [8]. The atomic orbital 
basis set for the central ion has been varied systematically, and the effect of sym- 
metric changes of bond distances has also been examined. In addition, we have 
performed calculations in which the regions around the ligands have been made 
more attractive for electrons, to simulate the presence of cations in solution and 
in the crystalline state. 

The results from our calculations show that there are a number of features 
that are fairly insensitive to changes in the input conditions, but there are also 
features which are not. We believe that a good qualitative understanding of the 
electronic structure of MnO2 may be obtained through a consideration of our 
results, and that more questions can now be answered than before. But the re- 
sults also demonstrate that it is fallacious to demand that theories of the present 
type, and also parameterized theories should be able to give quantitatively correct 
answers at this stage. 

2. Description of Method 
2.1. Core and Valence Orbitals 

The method employed in the present set of calculations has been thoroughly 
described and discussed in [8], and so we shall confine ourselves to a brief outline 
here. 

The molecular orbitals (MO's) of the complex are divided into core orbitals 
and valence orbitals. The core orbitals include the ligand ls orbitals and the ls, 
2s, 2p, 3s, and 3p orbitals of the central metal ion; these orbitals are all assumed 
to be the same as in the free ions. The valence MO's, denoted r are constructed 
as linear combinations of atomic orbitals, LCAO's: 

qgi= ~ a~iz~ (1) 
r = l  

assuming m atomic orbitals (AO's), denoted Xr- The AO's are of the types 3d, 
4s, and 4p for the metal ion, and of the types 2s and 2p for the ligands. In an LCAO 
MO calculation one determines the coefficients ari of Eq. (1) for a given radial 
dependence of each AO. By allowing the radial functions of the Z,'s to vary by 
performing several LCAO MO calculations, one may gain information as to 
which radial functions are the best to use. The same kind of information may, of 
course, be obtained by introducing several AO's of the same symmetry in (1). 
This procedure, which would be the natural one to follow in a completely quan- 
titative investigation, is, however, not practical within the set of approximations 
used in the present work. 
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2.2. Orthogonal Atomic Orbitals 
It is convenient to replace the AO's Zr with a set of orthonormal orbitals At, 

following one of the methods suggested in an article by L6wdin [12]: The valence 
AO's are divided into two groups, group 1 consisting of the metal 3d orbitals 
and the ligand 2s and 2p orbitals, and group 2 containing the metal 4s and 4p or- 
bitals. Within group 1 the AO's, Z,, Z2, ..., Zv are orthogonalized to each other, 
by use of L6wdin's method of symmetrical orthogonalization [12]. The AO's 
of group 2, )iv + 1, Zv + 2 .... , Z,, which are already orthogonal to each other, are then 
orthogonalized to the orbitals of group 1, by use of the Schmidt method. 

Expressed in terms of the orthonormal orbitals defined in this way, Eq. (1) 
becomes: m 

goi= ~ Cri2 r (2) 
r = l  

and the M O  coefficients given later in this article all refer to Eq. (2). 

2.3. Self Consistent Field Equations and Integral Approximations 
The ground state of the permanganate ion is a totally symmetric singlet state. 

In the Hartree-Fock model we represent it by a single Slater determinant: 
= [ ( ~ ~  ( ~ o r e . . .  + . . . .  - . . . .  + . . .  + - ~o. q~. ~01~1 q~.q~.l (3) 

with (p~ore and qh standing for core and valence MO's respectively. The + and - 
refer to alpha and beta spin functions in the usual way. 

The core orbitals, as defined in Section 2.1, are to a good approximation ortho- 
gonal to each other, and the "strong orthogonality condition": 

S g0i(1) q)~~ dr1 = 0 for all (go i, go~ ~ pairs (4) 

is also reasonably well fulfilled. It is then expedient to introduce the one-electron 
core operator: 

H .... (1)= T(1)+ Z V.(1) (5a) 
o 

V0(1)= Z~ + Z (2g ;~  ~ (5b) 
r l  O j on g 

where g numbers the various nuclei, with charges Zoe. T(1) is the kinetic energy 
operator, and j~ore and K~ ~ are the usual Coulomb and exchange operators: 

J r~  go(l)  = (p2~ g0~~ d~2 �9 ~o(1) (6a) 

f er~_2 core . core K~~ goj (2)rp(2)dz2 % (1). (6b) 

Application of Roothaan's method [22J then leads to the following set of 
equations [-8] : 

{ m ( 1 ) }  
(r[H .... Is)+ E P*, [rs]tu]-  ~[ru i t s ]  Cs~=st ~ (6rs+S~s) Cs, (7) 

s = l  t , u = l  ' \ s = l  

with r = 1, 2, ..., m, and 

(r IH .... Is) = j'2! 1) H . . . .  (1) As(l) dzl (8 a) 

[rsltu] = I I  2~(1) As(1 ) e2 2t(2) 2,(2) dra d~2. (8 b) 
J J  r l 2  
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P~,, is an element of the charge and bond order matrix: 

Pt,, = 2 ~, Ct~C,j. (9) 
j = l  

A number of semiquantitative features are now introduced to facilitate the 
evaluation of the integrals in Eq. (7). First, the quantities Sr~ from the overlap 
integrals 6rs + Sr~ between group 1 AO's are assumed to be so small, that second 
and higher order terms in these quantities may be neglected. As shown by 
L6wdin [12], this leads to the relations 

1 v 
2 r = Z , -  ~- Z SsrX~, ( r = l  . . . .  ,p). (10) 

S=I 

Furthermore, we neglect products of the type Sr~ Stu for r, s, t < p and u > p, so that 

2r=(1-  ~=lX2,)-l/2 (Zr-s~=lS~,)~) , (r=p+l,...,m). (ll)  

After the substitution of Eqs. (10) and (11) into Eq. (7), the problem is to evaluate 
integrals of the types (8). In the evaluation of most of these integrals we adopt 
the following approximations: 

X,(1) X~(1) = 1 S,~()~,(1) Z,(1) + Z~(1) )~(1)), (r, s _-_ p) (12 a) 

Z~(1) X,(1)=S,A~,(1)Xr(1 ) (r<=p, s>p) (12b) 

which may be looked upon as special cases of a formula given by L6wdin [11]: 

Z~(1) Z~(1) = ~ Z,(1) Zr(1) + fi Z~(1) Z~(1). (13) 

With a + fl = S~s, the total charge of the distribution g~Zs is preserved by the appro- 
ximation. By adopting different values for (a, fl), as in (12), an attempt is made also 
to represent the dipole moment of Zrg~ correctly. Eq. (12a) was first presented by 
Mulliken [13] on integral form. 

The approximations (12) are not, in our scheme, used in the evaluation of 
integrals containing the kinetic energy operator, and for integrals involving 
the core operator they are only used when more than two centers are involved. 
In the remaining integrals the original charge distributions are retained. 

With the present set of approximations the expressions for the integrals 
between the orthogonalized orbitals are considerably reduced. A further simpli- 
fication is, however, introduced by considering all AO's as s-like in their angular 
dependence, except in evaluating overlap integrals and one- and two-center in- 
tegrals arising from H .... . Our scheme has therefore much in common with the 
complete neglect of differential overlap (CNDO) method by Pople et al. [18], 
but instead of introducing parameters like these authors, we prefer to calculate 
all integrals exactly, using Corbat6 and Switendick's DIATOM programs [-4]. 
As mentioned in the introduction, the number of independent parameters is so 
large in our case, that they cannot be determined from experimental results on 
MnO4, and no ab initio calculation exists with which we can compare. 

The approximations behind the present method have been thoroughly 
discussed in [8] and [6], to which the reader is referred for further discussion. 
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3. Radial Functions 

This Section contains a specification of the radial functions which have been 
considered in our calculations. The radial functions for oxygen have not been 
varied, but we have, as mentioned earlier, performed calculations with a number 
of different manganese valence AO's. 

Each radial function R,z(r ) is represented by a linear combination of Slater- 
type orbitals (STO's): ~.z) 

R,t(r)= ~ CjR(nj,~;) (14) 
j = l  

with a single STO being of the form 

r "~-1 e -~jr (15) 
R(nj, ~j)= f (2~j)2ns+l ll/2 . 

(2n j)! 

The individual STO's as well as the radial functions R.t are normalized according 
to the relation: 

REr 2 dr = 1. (16) 
0 

The oxygen AO's have been taken from Clementi and Raimondi's determination 
of minimal basis set STO's [3]. In the notation of Eq. (14) we have: 

Rls(r ) = R (1, 7.6579) 

Rzs(r ) = -0.2371 R(1, 7.6579) + 1.0277 R(2, 2.2458) 

R2p(r) = R(2, 2.2266) 

R2s appears as a STO with n = 2 and ( = 2.2458, which has been Schmidt ortho- 
gonalized to the ls orbital 

Is 

2s 

3s 

2p 

3p 

Table 1. Core orbitals for Mn 

n~ ~j Cj 

1 24.385 1.0000 

1 24.385 -0 .3653 
2 9.325 1.0646 

1 24.385 0.1436 
2 9.325 -0 .4835  
3 4.27 1.0985 

2 10.15 1.0000 

2 10.15 -0 .3139  
3 3.955 1.0482 

The manganese orbitals have been determined from the papers of Richardson 
et al. [20, 21]. Table 1 gives the fixed Mn core orbitals, used in all calculations, and 
the various 3d, 4s, and 4p orbitals used are listed in Tables 2-4. These valence AO's 
are all orthogonal to the core orbitals of Table 1. 

The 3d orbitals of Table 2 denoted d 7, d 6 . . . . .  d 2 have been determined from 
the configurations (Ar) (3d) 7, (Ar) (3d)6, ..., (Ar) (3d) 2 respectively [20], with (Ar) 
standing for the closed argon core (ls) 2 (2s) z (2p) 6 (3s) 2 (3p) 6. The 3d orbitals 
are all of the "double zeta" type, being linear combinations of two STO's. Ortho- 
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Table 2. Mn 3d orbitals 

Configuration nj (j Cj 

d 7 3 5.15 0.514 
3 1.70 0.693 

d 6 3 5.15 0.532 
3 1.90 0.649 

d s 3 5.15 0.547 
3 2.10 0.605 

d 4 3 5.15 0.565 
3 2.30 0.562 

d 3 3 5.15 0.585 
3 2.50 0.519 

d 2 3 5.15 0.605 
3 2.70 0.479 

13 

Table 3. Mn 4s orbitals 

Configuration n~ (~ Cj 

4s(d6s 2) 1 24.385 -0.0024 
2 9.325 0.0081 
3 4.270 -0.0193 
4 0.650 1.0002 

4s(dSs 2) 1 24.385 -0.0211 
2 9.325 0.0720 
3 4.270 -0.1794 
4 1.350 1.0133 

4s(d4s l) 1 24.385 -0.0480 
2 9.325 0.1651 
3 4.270 -0.4338 
4 1.940 1.0754 

Table 4. Mn 4p orbitals 

Configuration nj (j Cj 

4p(d6p 2) 2 10.15 0.002861 
3 3.955 - 0.009868 
4 0.51 1.000044 

4p(dSp 2) 2 10.15 0.029676 
3 3.955 -0.10508 
4 1.06 1.00502 

4p(d4p 1 ) 2 10.15 0.07384 
3 3.955 - 0.27012 
4 1.52 1.03270 

g o n a l i t y  r e q u i r e m e n t s  w o u l d  n o t  exc lude  s i m p l e  S T O ' s  b u t  i t  is k n o w n  f r o m  
p r e v i o u s  i n v e s t i g a t i o n s  I-7, 20]  t ha t  a s ingle  S T O  c a n n o t  r e p r e s e n t  an  a t o m i c  3d 
o rb i t a l  w i t h  suff ic ient  a c c u r a c y ,  ne i t he r  in t he  i n t e r n a l  n o r  t he  e x t e r n a l  r e g i o n  o f  

an  a t o m .  T h i s  p o i n t  has  r e c e n t l y  b e e n  t h o r o u g h l y  d i scussed  by  B r o w n  a n d  F i t z -  
p a t r i k  I-2]. I t  m a y  be  n o t e d  t h a t  al l  d o rb i t a l s  c o r r e s p o n d  to  c o n f i g u r a t i o n s  w i t h  
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empty 4s and 4p shells. This is due to the fact that the form of a 3d orbital is quite 
independent of the population of these outer shells, as first shown by Watson [23]. 

The notation for the 4s and 4p orbitals has also been chosen so as to indicate 
the configuration from which the orbitals have been determined. A 4p orbital 
may be considered as a STO with n = 4, which has been Schmidt orthogonalized 
to the 2p and 3p orbitals of the core. Similarly, a 4s orbital may be considered 
as a STO with n = 4, orthogonalized to the is, 2s, and 3s orbitals. Use has been 
made of this fact in constructing the 4s orbitals 4s(d6s 2) and 4s(d4s 1) in Table 3. 
4s functions for the configurations (Ar) (3d) 6 (4s) 2 and (Ar) (3d) 4 (4s) 1 do not exist 
in the literature, and we have therefore constructed such functions by demanding 
that 

~4s(d6s 2) ~4s(d5s 2) 
- (17) (4p(d6p 2) (4p(d5p 2) 

for the 4s(dSs 2) orbital, and 

(4s(d4s 1) (4s(dSs 2) 
- ( 1 8 )  (4p(d4p 1) ~4p(d5p 2) 

for the 4s(d4s 1) orbital. These relations fix, by means of the orbital 4s(d5s 2) and the 
three 4p orbitals of Table 4, the 4s STO's with n--4. Schmidt orthogonalization 
to the core functions then results in the orbitals of Table 3. 

The orbitals of Tables 2, 3 and 4 are in the following considered as a set of 
possible valence AO's for Mn, from which the best AO's for an MO calculation 
are to be chosen. It is not claimed that the relations (17) and (18) furnish the best 
AO's for atomic states, rather they supply a set of 4s functions wich are convenient 
for our purpose. 

4. Resu l t s  and D i scus s ion  

The results from our calculations are presented in the following set of tables 
and figures. Unless otherwise specified the M n - O  distance has been taken as 
1.629 A, from the recent determination by Palenik [15]. This distance differs 
slightly from the value 1.59 A used in the two permanganate calculations re- 
ported in reference [8]. 

4.1. Search for Best Atomic Orbitals 
According to the variational principle, the best MO's are obtained by mini- 

mizing the total energy of the system considered. This principle leads directly 
to Roothaan's equations [22] for a fixed set of AO's, and also to the requirement 
that one should look for an optimal basis set of AO's in the sense, that such a set 
of AO's, in conjunction with Roothaan's equations, should result in a lower 
energy than any other basis set of the same size. In parameterized theories and 
semiquantitative theories like the present one, the variational principle is applied 
to an energy expression which is only approximately correct. Hence the results 
from a search for an optimal basis set must be interpreted with some caution. The 
same holds, of course, for the results from a search for optimal coefficients in the 
LCAO's through an application of Roothaan's equations. It is in harmony with 
this point of view to use AO's of a simple form and only to vary these on a coarse 
mesh. 
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The oxygen orbitals have not been varied here, because it is known from ab 
initio calculations on smaller molecules, that the optimal first row AO's to be 
used in ground state MO's differ only slightly from the best AO's for free atoms. 
(See, for instance, references [19, 17], and [1].) The differences are too small to be 
of significance in the present type of investigation. It would, however, be premature 
to conclude that the experience gained regarding the first row AO's can be trans- 
ferred directly to the third row AO's of the types 3d, 4 s, and 4p. The factors govern- 
ing the change of AO's during molecule formation operate together in a compli- 
cated way, as demonstrated by Coulson [5], and it is also known that the hydrogen 
ls orbital changes drastically during molecule formation [19], and that 2p orbitals 
optimized for excited states may be very different from the free atom 2p orbitals [10]. 

We have, therefore, attempted to minimize the energy of the closed shell 
wave function (3) in order to determine the best AO's of the types 3d, 4s, and 4p. 
The total energy, E~ may be written 

E~ = E .... + E (19) 
where 

E .... = i=1 ~ {fq~~ IT(1)-~"Z~176176 rlg 3 

f } + ~p[~ H .... (1) (p~~ dz 1 + ~-  - -  
g>h ~gh 

and E = ~ {e, + S ~0~(1) H .... (1) ~oi(1 ) dZl} (21) 
i = l  

Ecore depends only on the nature of the core, and is thus the same for all calcula- 
tions in which the Mn-O distance is the same. The variation of Et is therefore 
given by the variation of E, when the valence AO's alone are varied. 

In Table 5 we give the energy E in atomic units (1.a.u. = 27.21 eV) for two diffe- 
rent choices of 3d function, viz. 3d(d v) and 3d(d4). For each 3d orbital, calculations 
have been performed for all possible pairs of 4s and 4p orbitals that can be taken 
from Tables 3 and 4. It is seen that E, for both choices of 3d function, is a mini- 

T a b l e  5 .  Variation of the energy E as function of 4s and 4p orbitals. 
Energies in atomic units (la.u. = 27.21 eV) 

4s(d6s 2) 4s(dSs 2) 4s(d4s 1) 

3 d ( d  7)  

3 d ( d  4 )  

4p(d6p 2) - 1 7 2 . 3 4  - 1 7 3 . 7 9  - 1 7 3 . 3 4  

4p(dSp 2) - 1 7 5 . 3 8  - 1 7 6 . 4 4  - 1 7 5 . 8 0  

4p(d4p 1) - 1 7 4 . 5 8  - 1 7 5 . 5 4  - 1 7 4 . 4 0  

4p(d6p 2) - 1 7 1 . 3 5  - 1 7 2 . 9 4  - 1 7 1 . 7 5  

4p(dSp z) - 1 7 4 . 3 4  - 1 7 5 . 6 3  - 1 7 4 . 6 7  

4p(d4p 1) - 1 7 3 . 7 5  - 1 7 4 . 8 1  - 1 7 3 . 6 1  

mum for the functions 4s(dSs 2) and 4p(dSp2). For this reason we expect the best 
in situ 4s and 4p orbitals to be quite close to these functions. So far as the 4s orbital 
is concerned, the function is the same as in the free atom. 

With the orbitals 4s(dSs 2) and 4p(dSp 2) a series of calculations have been 
performed, in which the 3d orbital has been varied. The resulting energies are 
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shown in Table 6. Shown is also, for each calculation, the population of the 3d 
shell. With reference to Eq. (9) this population is defined as ~ Prt, where the sum 

t 

over t is over the five 3d orbitals. It is seen from Table 6, that the energy E decreases 
as the 3d orbital expands, i. e. with increasing population of the 3d shell. There is, 
however, no indication of a minimum in E; indeed, E decreases almost linearly 
throughout  the series of functions 3d(d z) . . . . .  3d(dV). It is, however, noted that 
the energy varies much less throughout  Table 6 than throughout Table 5, and 
this makes it understandable that our approximations prevent the appearance of 
a minimum in Table 6. We may, however, take the results of that table to indicate, 
that there is a tendency for the 3d orbital to expand during molecule formation. 
We assume, therefore, that the best 3d orbitals are 3d(d 6) or 3d(dT). This assump- 
tion leads to a 3d shell population close to five, which is very reasonable, since a 
free Mn atom contains five 3d electrons. 

Tab le  6. Variation of the energy E as function of the 3d orbital, 
with the 4s and 4p orbital fixed as 4s(dSs ~) and 4p(dSp 2) 

3d orbi ta l  E (a.u.) P o p u l a t i o n  of 3d shell 

3d(d 7) - 176.44 5.12 
3d(d 6) - 176.15 4.65 
3d(d s) - 175.91 4.39 
3d(d 4) - 175.63 4.18 
3d(d a) - 175.31 3.98 
3d(d 2) - 175.02 3.80 

The five 3d orbitals span the irreducible representations e and t2 in a tetra- 
hedral molecule, and there is therefore the possibility that different 3d orbitals 
should be used for these two representations. We have studied this possibility, 
but our results are quite insensitive to differences in the two orbitals. It is the 
choice for the t2 orbital which determines the energy and the molecular orbital 
level diagram. Use of the 3d(d 7) orbital for t2 and the 3d(d 5) orbital for e leads, 
for instance, to an energy E = - 176.43 a.u., which is the same value as is obtained 
when the 3d(d 7) orbital is used for both representations. It is therefore not necessary, 
in our approximation, to work with two different radial functions for the 3d 
orbitals. 

The conclusion of the present section is then, that one should use free atom 
AO's for the ligands. The Mn 4s and 4p orbitals should be taken as 4s(dSs 2) and 
4p(dSp z) and the orbitals 3d(d 7) or 3d(d 6) should be used as 3d orbitals, for both e 
and t2 representations. 

4.2. Molecular Orbitals as Functions of Metal AO's 
The MO's ofa  tetrahedral molecule have symmetry designations al, e, tl, and t 2, 

and they are in the LCAO approximation represented as linear combinations of 
symmetry adapted orbitals. The symmetry adapted orbitals are again linear 
combinations of atomic orbitals, in our case orthogonalized AO's. We refer to 
reference [8] for a full specification of the form of the symmetry adapted orbitals 
used in the present work. 
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In Tab le  7 we presen t  the  M O  energies ~i of  Eq. (7), resul t ing f rom a set of  cal- 
cu la t ions  in which the M n  3d rad ia l  funct ion was kep t  fixed as 3d(d7), and  the 4s 
and  4p orb i ta l s  were varied,  as in Table  5. The  orb i ta l s  2e, 4t2, 3ai,  and  5t2 are  
all  empty,  whereas  the r ema in ing  ones are  fully occupied  with electrons.  The  M O  
energies are  seen to  be h ighly  dependen t  on  the 4s and  4p orb i ta l s  chosen, which 
is no t  t oo  surpris ing.  Of  m o r e  interest ,  however ,  is the fact tha t  also the  o rde r  of  
the M O  levels is qui te  sensit ive to var ia t ions  in the 4s and  4p orbi ta ls .  This  is 
especial ly t rue  for the  o rde r  of  the highest  occupied  orbi ta ls ,  whereas  the  o rde r  
of  the  e m p t y  orb i ta l s  is 2e < 4t 2 < 3al < 5t2 in all  cases, except  in the  ca lcu la t ion  
(2, 1) where  2e and  4t2 are  a p p r o x i m a t e l y  degenerate ,  and  (3, 1) where the o rde r  of  
2e and  4t 2 is reversed.  Al l  in all  Table  7 emphas izes  the necessi ty of  pe r fo rming  
the search for op t ima l  AO's ,  descr ibed  in the  preceding  section. 

Table 7. MO energies in eV as functions of Mn 4s and 4p orbitals with the 3d orbital fixed as 3d(dT) a 

s,p 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3 

a 1 8.377 3.928 6.361 10.828 3.955 9.339 12.682 7.312 14.742 
- 5.610 -10.098 - 6.282 -15.442 -17.840 -12.895 -11.396 -11.757 - 3.836 
-27.860 -31.189 -28.215 -34.926 -36.681 -32.043 -22.743 -27.534 -21.551 

e 1.209 - 1.983 2.576 3.688 - 2.287 4.498 6.506 0.731 8.173 
-11.674 -15.522 -10.305 - 9.380 -15.162 - 8.830 - 7.262 -12.203 - 51049 

t 2 14.630 10.073 14 .650 16.811 11 .212 17.146 18.358 13.009 19.438 
3.063 2.150 5.185 3.683 1.691 6.974 3.928 3.427 9.807 

-- 7.870 --12.655 -- 9.767 -- 6.853 --13.354 -- 8.487 -- 5.662 --11.216 -- 5.338 
--13.547 --24.858 --19.934 --11.853 --23.934 --17.450 --10.205 --22.513 --15.244 
--30.788 --36.385 --31.185 --29.125 --36.559 --29.715 --27.275 --34.332 --26.220 

ta -- 7.670 -- 9.401 -- 6.812 -- 6.685 --11.576 -- 6.583 -- 5.454 -- 9.077 -- 2.656 

" The 4s and 4p orbitals used are specified by pairs of numbers in the heading of the table, so that 
i, k stands for the i'th 4s orbital and the k'th 4p orbital, according to the orders 4s(d6s2),4s(dSs2),4s(d4s 1) 
and 4p(d6s2), 4p(d~p2), 4p(d4pl). 

Fig.  1 shows how the M O  energies vary  with the M n  3d rad ia l  functions,  with 
the  4s and  4p orb i ta l s  fixed as the "op t ima l "  orb i ta l s  4s(dSs 2) and  4p(dSp2). It  is 
seen tha t  the  loca t ions  of  the  i m p o r t a n t  e o rb i ta l s  are  very dependen t  on the choice 
of  the 3d rad ia l  funct ion,  bu t  o therwise  the  o rde r  of  the mo lecu la r  o rb i ta l s  is 
ra ther  stable.  O n  the basis  of  the a rgumen t s  presented  in Sect ion 4.1 it is the 
first two co lumns  in Fig. 1 which should  represent  the mos t  l ikely molecu la r  
o rb i t a l  level d i a g r a m  for M n O 4 .  

In Tables  8 and  9 we list the coefficients of  the M O ' s  co r r e spond ing  to  co lumns  
1 and  4 in Fig. 1. I t  is aga in  clear  tha t  it is the e orb i ta l s  which are  mos t  sensit ive 
to the form of  the 3d r ad ia l  function.  A p r o m i n e n t  feature of  tables  8 and  9 is the 
fact tha t  the orb i ta l s  4s and  4p are  s t rongly  mixed  into  the occupied  orbi ta ls .  
F o r  a fur ther  d iscuss ion of  the M O  coefficients we refer to ref. [-8], where Table  8 
also is presented ,  wi th  the sl ight  modi f i ca t ion  tha t  the M n - O  dis tance  is chosen  
as 1.59/~ ins tead  of 1.629 A, as used here. 

4.3. Molecu lar  Orbitals as Funct ions  o f  M n - O  Distance 

It  is of  cons ide rab le  i m p o r t a n c e  to know how an M O  level d i a g ra m depends  
on  b o n d  dis tance,  and  we have therefore  pe r fo rmed  ca lcu la t ions  in which the 
2 Theoret. claim. Acta (Bed.) Vol. 11 
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Mn-O bond length has been varied, using the Mn orbitals 3d(dT), 4s(dSs2), and 
4p(dSpZ). The results from these calculations are shown in Fig. 2. Calculations 
wereperformed for the Mn-distances 1.552 A, 1.590 A, 1.629 A, 1.659 A, and 1.689 A. 
The first of these distances is the average value of the Mn-O distances given by 
Wyckoff [24], the second value was used by Oleari et al. [14] and in Ref. [8]. 
The value 1.629 A was determined by Palenik [15] and has been used extensively 
in the present work. Finally, the value 1.659 A is the Mn-O distance in MnO 2-, 
as determined by Palenik [16], and the value 1.689 A is the extrapolated Mn-O 
distance in MnO 3-. 

The MO energies are seen to be linear functions of the Mn-O distance, and 
apart from the crossing of the lal and the ltz orbitals, the order of the MO's 
remains unchanged between 1.55 and 1.70 A. The slopes of the different lines in 
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Fig. 1. MO level diagram as depending on the form of the Mn 3d radial function. The abscissa indicates 
the configuration from which the atomic 3d radial function has been derived (see Section 3) 
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Table 8. Molecular orbitals for MnO4, corresponding to the metal orbitals 3d(d7), 4s(dSs2), 4p(dSp 2) 

Eigenvalues (eV) Eigenvectors 

S ~s ~p 

ai 3.955 -0.3790 -0.1151 0.9182 
-17.840 0.7125 0.5969 0.3689 
-36.681 -0.5905 0.7941 -0.1442 

d n 

e - 2.287 0 .7208 -0.6932 
- 15.162 0.6932 0.7208 

p d ap a~ 

t 2 11.212 -0.3085 -0.5176 0.7777 0.0830 0.1587 
1.691 -0.6184 0.4461 -0.0143 -0.3806 0.5254 

-13.354 -0.1809 0.4028 0.3822 -0.2939 -0.7567 
-23.934 0.6273 0.4845 0.4975 0.0190 0.3519 
-36.559 -0.3140 0.3689 0.0377 0.8727 -0.0485 

t 1 - 11.576 1.0000 

Table 9. Molecular orbitals for MnO~, corresponding to the metal orbita~ 3d(d4), 4s(dSs2), 4p(dSp 2) 

Eigenvalues (eV) Eigenvectors 

S ffs ffp 

a 1 5.818 -0.3244 -0.1010 0.9405 
- 18.546 0.7150 0.6248 0.3137 
--37.156 -0.6193 0.7742 -0.1305 

d n 

e 4.533 0.9744 -0.2248 
-12.979 0.2248 0.9744 

p d a~ 

t 2 10.209 -0.3823 -0.3610 0.8338 
- 0.378 -0.5605 0.4539 -0.1870 
-13.903 -0.1495 0.6009 0.3149 
-22.466 0.5961 0.5003 0.4112 
-34.666 -0.4025 0.2287 -0.0396 

n 

tl - 12.368 1.0000 

Gs 

-0.0273 0.1660 
-0.3253 0.5823 
-0.2750 -0.6647 

0.2028 0.4292 
0.8813 -0.0860 

Fig.  2 vary ,  h o w e v e r ,  c o n s i d e r a b l y ,  a n d  this  is a p o i n t  o f  g rea t  i m p o r t a n c e  for  the  

u n d e r s t a n d i n g  o f  the  e l e c t r o n i c  s p e c t r u m ,  as it wil l  be  e m p h a s i z e d  in Sec t i on  4.5. 

Fig .  2 m a y  a lso  pa r t l y  a n s w e r  the  ques t i on ,  h o w  a c c u r a t e  a s t ruc tu re  ana lys i s  
s h o u l d  be  in o r d e r  to  p r o v i d e  a sa t i s fac to ry  g e o m e t r y  for  use  in M O  ca lcu la t ions .  
A n  a c c u r a c y  o f  _ 0 . 1  A is a p p a r e n t l y  suff ic ient  for  t heo r i e s  l ike  t he  present ,  in 

w h i c h  o n e  s h o u l d  n o t  a t t a c h  t o o  m u c h  s ign i f icance  to  the  exac t  n u m b e r s ,  b u t  
o n l y  t rus t  the  q u a l i t a t i v e  aspects .  But  Fig.  2 a lso  ind ica t e s  t ha t  an  a c c u r a c y  o f  

_ 0 .01 /~  m i g h t  wel l  be  des i r ab l e  in exac t  c a l cu l a t i ons  to come .  

2* 
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Fig. 2. MO level diagram as function of the Mn-O distance 

4.4. Variation of Ligand Potential 
The calculations mentioned so far all refer to an isolated MnO~ ion, In practice, 

however, the MnO~ ion is always embedded either in a crystal or in a solution, 
and it must be expected that nearby cations will create a potential, which is more 
attractive for electrons in the regions around the ligands than in the region around 
the Mn ion. As suggested in Ref. [8] this feature may be taken into account by 
subtracting a certain positive number, A c~ from all integrals of the type 

Zr(1) He~ Z,(1) dzl where Z, is a non-orthogonalized ligand AO. 
Fig. 3 shows the MO energies as function of A r176 corresponding to the Mn 

orbitals 3d(dT), 4s(dSs2), and 4p(dSp2). The MO energies are seen to vary linearly 
with A ... .  over the range considered. Also the gap between the occupied and the 
empty orbitals (i.e. between t 1 and 2e) increases with A .... , and this fact may 
be used, as in Ref. [8], to place the first transition energy correctly, i.e. A .... may 
be used as a semiempirical parameter. In this way one would, presumably, not 
only correct for some of the influences from the surroundings, but also for errors 
in the relative positions of metal and ligand orbitals on the energy scale. Such 
errors may occur because of the approximations of our model. 

4.5. Electronic Transition Energies 
The non-occupied MO's  obtained by our calculations may be used to con- 

struct wave functions for excited states of the MnO2 ion, by transferring electrons 
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from filled to empty orbitals. The ground state wave function for MnO~ has 
symmetry 1A1, and since the electric dipole vector transforms as T2, all electric 
dipole allowed transitions are to excited states of symmetry 1T2. One excited 
state of symmetry ~T2 may be derived from each of the one-electron transitions 
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Fig. 3. MO level diagram as function of A . . . .  

shown in Fig. 4. The transition energies AEi._, k are in that figure shown as functions 
of the 3d radial function, and are defined as 

ZI E l _ ,  k -~  e k - -  e i - -  J i k  (22) 
where the transition i--* k corresponds to the transfer of an electron from the 
occupied orbital rpi to the empty orbital ~Ok. J i g  is the usual Coulomb integral: 

f e2 Jik = (Pi(1) (Pi(1) r--772 (pk(2) q)k(2) dzl dz2.  (23) 

Eq. (22) is not the correct expression for the energy associated with alA1 --+ 1T 2 
transition, but differs from it through important two-electron integrals [8], 
which serve to separate the various electronic states associated with the one- 
electron transition. These integrals are considerably smaller than Jik, however, 
and will in general give a positive contribution to A E ,  I~  k.  Such integrals can not 
be evaluated with sufficient accuracy by a straightforward application of the 
CNDO approximation, and instead of evaluating them in a ZDO approximation 
we have left them out altogether. One further reason for doing so is supplied by 
the fact, evident from Fig. 4, that the calculated transition energies are extremely 
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sensitive to changes in the radial functions used, so that it is difficult to attach 
any quantitative meaning to the calculated transition energies. Still, Fig. 4 con- 
tains some useful information, when it is considered together with other aspects 
of the calculation. 

According to Section 4.1, one should only attach significance to the results 
from the calculations, in which the 3d radial function has been taken as 3d(d 7) or 

Transition energy 

11 i ~ tl-2e 

8 Je~4t2~ 

7 6 it2*4t2~ 
5 l t l '4t2*'~ 

3t 2 - 2e 
le-4t 2 
tl~4t 2 

3 t 2 ~4t 2 

d 7 d 6 d 5 d 4 d 3 d 2 

Fig. 4. Transition energies as functions of the Mn 3d radial function. Mn 4s and 4p functions are taken 
as 4s(dSs 2) and 4p(d~p 2) 

3d(d6), and we shall therefore in the following limit ourselves to these cases. The re- 
maining part  of Fig. 4 reminds of the necessity of looking for optimal AO's in an 
LCAO M O  calculation. 

5. Interpretation of the Electronic Absorption Spectrum 
The electronic absorpt ion spectrum of the MnO~ ion has been the subject- 

matter  of much discussion. We refer to Ref. [-8] for a comparison of the results 
from various theoretical investigations and add here only the information obtained 
through the present set of calculations. 

The most complete absorption spectrum of MnO4  has b e e n  recorded by 
Hol t  and Ballhausen [93, who examined a solid solution of KMnO4 in KC104 
at liquid hydrogen and helium temperatures. Four  band systems were observed 
and discussed: 

The first band system has its max imum at about  20,000 cm -1 and shows a 
very complicated vibrational pattern. Holt  and Ballhausen were able to conclude 
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that this band system represents a single electronic transition from the orbitally 
non-degenerate ground state to a threefold orbitally degenerate state. 

The second band system covers the region from 25,000 cm-  1 to 30,000 c m - t  
and consists of seven peaks superimposed upon a strong background. 

The third band system shows a very regular progression in 750 cm -1, the 
maximum occurring at 33,000cm -~. Only a single electronic transition is in- 
volved. 

The fourth band system has its maximum at 43,500 cm-  ~ and is completely 
featureless; it represents again a single electronic transition. 

Holt  and Ballhausen discussed the interpretation of this spectrum on the basis 
of the calculations presented in [8], but only a very tentative assignment was 
possible. With the present set of calculations we are, however, able to take one 
more step forward towards the understanding of this puzzling spectrum. 

Table t0. Molecular transition eneroies in eV, as functions of Mn-O distance R in A. Mn radial functions 
are 3d(dV), 4s(dSsZ), 4p(dSp 2) 

Transition R 

1.552 1,590 1.629 1.659 1.689 

t 1 ~ 2e 0.01 0.00 0.18 0.22 0.57 
3 t2~ 2e  1.58 1.41 1.33 1.21 1.28 
t 1 --,4t 2 6.44 5.95 5.52 5.17 4.84 
3 t z ~ 4 t  2 8.18 7.61 7.05 6.65 6.28 
le--*4t 2 10.27 9.21 8.16 7.43 6.67 
3t2 ~ 3al 8.23 8.29 8.45 8.66 9.09 

The one-electron transitions of Fig. 4 are in Table 10 presented as functions 
of the M n - O  separation, for the 3d radial function 3d(dT). The fact that the first 
transition energy is almost zero is a consequence of the fact that we have desisted 
from using semiempirical parameters in our calculations. The transition energies 
would be pushed up by using, for instance, a non-zero value for A .... , as discussed 
in [8] and section 4.4, and also Eq. (22) is incomplete as mentioned in Section 4.5. 

The important information in Table 10 is, that the transitions t 1 --* 2e, 3t 2 --* 2e, 

and 3t 2--* 3a I allow the formation of excited states which are stable with respect 
to symmetric distortions, and with an Mn-O distance close to the one found 
in the ground state, whereas the transitions t 1 ~ 4t2, 3t 2 --* 4t2, and le--, 4t 2 result 
in dissociative states. The first three transitions should therefore lead to absorption 
bands with a pronounced vibrational structure at low temperatures, whereas the 
last three transitions should result in broad, featureless bands. The half-widths 
of these bands may be estimated from Table 10 as follows. 

The totally symmetric zero-point vibration is governed by the wave function 
f ~ ~y4 

tpo(x) = t ~ -  ) e -='2/2 (24) 

where x measures the magnitude of the totally symmetric displacement from the 
"equilibrium" position, and c~= 4rc2Mvc /h .  To a good approximation M may 
be taken as the mass of the oxygen atom; v is the totally symmetric vibration fre- 
quency in cm -1, and h is Planck's constant. The half-width 6 of the gaussian 
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function I%0o(X)l 2 is [ ln2/a]  1/2, and under the assumption that v ~ 800 cm -1 
[9], we find that ~ ~ 0.043 A. 

The half-widths of the bands associated with the transitions tl ~ 4t2, 3t2--* 4t2, 
and 1 e ~ 4 t 2  may then be estimated from Table 10 as the variations in the transi- 
tion energies over a range of 0.06 A, when the slight variation of the ground state 
energy over this range is neglected. We find for the three transitions mentioned 
the half-widths 3900 cm -1, 4700 cm -~, and 8800 cm -1, respectively. 

From Fig. 4 it follows that our calculations predict two low lying absorption 
bands with pronounced vibrational structure. These bands arise from an inter- 
action between the t 1 ~ 2 e  and 3tz-+2e transitions. The interaction is strong, 
if 3d(d 6) is the optimal orbital, but if the optimal orbital is 3d(d v) then the first of 
the transitions is mostly q--+2e, the second mostly 3t2--*2e. We associate the 
first and third band systems with these two transitions. 

Fig. 4 indicates that the 3t2 ~ 3a~ transition occurs at too high energies to 
require consideration in the present context. We are then left with the transitions 
tl ~4t2 ,  3t2 ~4 t2 ,  and l e ~ 4 t  2 which should all lead to featureless bands. If 3d(d 7) 
is the optimal orbital then the three transitions should not mix heavily, and they 
should all lead to absorption at high energies. As in Ref. [8], we would in this 
case leave the second band system unexplained and associate the fourth band 
system with a transition which is mainly t~ ~ 4t z. 

If, however, the optimal orbital is 3d(d6), then the most likely assignment 
would be the following: The first and third band systems correspond to mixtures 
of the q ~ 2 e  and 3t 2 -+2e transitions; the featureless background of the second 
band system corresponds to the q ~ 4t2 transition, pushed down by configuration 
interaction, and the fourth band system corresponds to a heavy mixture of the 
3 t 2 ~ 4 t  2 and l e ~ 4 t  z transitions. The fine structure of the second band system 
remains unexplained by this assignment, but may be associated with an orbitally 
forbidden transition. 

According to the measurements by Holt  and Ballhausen [9] the half-widths 
of the second and third band systems are about 4000 cm -~ and 6500 cm ~, and 
these findings would seem to support the second assignment above, corresponding 
to the 3d(d 6) orbital, when a comparison is made with the half-widths estimated 
from our calculations. 

An important conclusion to be drawn from the present set of calculations is 
that the outcome from a calculation of transition energies is extremely sensitive 
to the radial functions chosen. This feature must of course hold for semiempirical 
as well as for semiquantitative models. It does not, however, mean that such models 
are worthless, since, as we have demonstrated in the present section, it is possible 
to arrive at a probable assignment of the electronic spectrum, but one should 
certainly be careful not to jump to conclusions from a single calculation. 

6. Conclusion 

The present set of calculations constitutes one of the most detailed theoretical 
investigations carried out so far for the MnO 4 ion. It is hoped that it will be of 
qualitative use in further experimental examinations, until it becomes possible 
to perform an ab initio calculation for this ion. 
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